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In order to study M(R, C), the set of binary matrices with 
fixed row and column sums R and C, we consider submatrices 
of the form 

(1 0
0 1

)
and 

(0 1
1 0

)
, called positive and nega-

tive checkerboard respectively. We define an oriented graph 
of matrices G(R, C) with vertex set M(R, C) and an arc from 
A to A′ indicates you can reach A′ by switching a nega-
tive checkerboard in A to positive. We show that G(R, C)
is a directed acyclic graph and identify classes of matrices 
which constitute unique sinks and sources of G(R, C). Given 
A, A′ ∈ M(R, C), we give necessary conditions and sufficient 
conditions on M = A′−A for the existence of a directed path 
from A to A′.
We then consider the special case of M(D), the set of adja-
cency matrices of graphs with fixed degree distribution D. We 
define G(D) accordingly by switching negative checkerboards 
in symmetric pairs. We show that Z2, an approximation of 
the spectral radius λ1 based on the second Zagreb index, is 
non-decreasing along arcs of G(D). Also, λ1 reaches its max-
imum in M(D) at a sink of G(D). We provide simulation 
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results showing that applying successive positive switches to 
an Erdős-Rényi graph can significantly increase λ1.
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

0. Introduction

In the study of diffusion processes along a network, the largest eigenvalue of the adja-
cency matrix, called the spectral radius of the network and denoted by λ1, plays a critical 
role. For instance, in epidemic models, having a reproduction number R0 greater or 
smaller than 1/λ1 determines whether the epidemic will die out or keep spreading. Also, 
in the problem of synchronisation of coupled oscillators on a network, a key threshold 
criterion for the stability of the synchronised solution is based on λ1. The largest eigen-
value similarly affects other percolation processes such as wildfires or rumours spreading 
in social networks and is also of interest in the study of random matrices.

The parameter which has the greatest impact on the value of λ1 is the degree distri-
bution of the network. Indeed, some lower bounds and approximations of λ1 are entirely 
determined by the degree distribution [1]. Such approximations can be very precise for 
the vast majority of cases, but tend to become wildly inaccurate in extreme cases of net-
works with very particular topological properties. In this article, we consider the degree 
distribution fixed in order to analyse how the topology of the network affects λ1. The 
study of matrices with fixed degree distribution has applications to epidemic models [2], 
synchronisation problems [3], ecology [4], LT codes [5] and many other areas. Once the 
degree distribution is fixed, the degree assortativity is the most important parameter of 
real networks [6,7].

When working with a fixed degree distribution, we rely on a basic operation which 
consists in switching the 1s and 0s in a 2 × 2 submatrix of the adjacency matrix of 

the form 
(

1 0
0 1

)
or 

(
0 1
1 0

)
, called a checkerboard. Note that these submatrices can 

be selected from any two rows and columns, not necessarily adjacent, in the adjacency 
matrix. Any such switching amounts to rewiring two edges in a way that leaves the 
degree distribution invariant. This allows us to visualise the set of binary matrices with 
a given degree distribution as the vertex set of a graph where two matrices are adjacent 
if they differ by one switch. It was shown in [8] that this graph of matrices is connected.

In this paper, we call the two above submatrices positive and negative checkerboards. 
This polarisation of checkerboards defines an orientation of the edges of the graph of 
matrices, which represents an order known as the secondary Bruhat order in the literature 
[9–11]. In the case of adjacency matrices, we evidence links between secondary Bruhat 
order, spectral radius and second Zagreb index. In Section 1, we introduce the basic 
definitions surrounding checkerboards. Then, in Section 2, we show that the oriented 
graph of matrices is a directed acyclic graph and discuss its sources and sinks as well 
as when A′ can be reached from A by following an oriented path. Finally, in Section 3, 
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we describe how the second Zagreb index, an approximation of λ1, evolves throughout 
the graph of matrices. We then show that λ1 reaches its global maximum at a sink 
of the graph of matrices and describe the evolution of λ1 through simulations. The 
proofs of two theorems from Section 2 have been placed in the appendix for the sake 
of improving readability. In order to maximise the generality of our results, we have 
considered non-symmetric binary matrices with fixed row and column sums in all sections 
except Section 3, where we consider only adjacency matrices. Note that a non-symmetric 

matrix A can be interpreted as a characteristic submatrix of M =
(

0 A
At 0

)
, where M

is the adjacency matrix of a bipartite graph.

1. Positive and negative switches

Given a (0, 1)-matrix A, a checkerboard of A is a 2 × 2 submatrix of A of the form 

either 
(

1 0
0 1

)
or 

(
0 1
1 0

)
. A checkerboard found on rows i and j and columns k and 

l, with i < j and k < l, is said to have coordinates (i, j, k, l). A unitary checkerboard is 
a checkerboard selected from adjacent rows and adjacent columns and has coordinates 
(i, i + 1, k, k + 1). Switching a checkerboard refers to replacing one form with the other 
(also called interchange or swap in the literature). Note that row and column sums are 
invariant under this operation. The following result was shown by Ryser in 1957:

Theorem 1 (Ryser, [8]). Given two matrices A and A′ in the class of (0, 1)-matrices 
having specified row and column sums, one can pass from A to A′ by a finite sequence 
of switches.

This property makes switching checkerboards an essential tool for studying classes of 
matrices with fixed row and column sums as well as classes of graphs with fixed degree 
distributions. Applying successive random switches to a binary matrix creates a Markov 
chain which visits all possible matrices with the same row and column sums. This Markov 
chain can then be used to sample randomly matrices with a fixed degree distribution 
[12].

In this paper, we attribute a sign to checkerboards and switches: a checkerboard of 

the form 
(

1 0
0 1

)
is said to be positive while a checkerboard of the form 

(
0 1
1 0

)
is said 

to be negative. A positive switch corresponds to replacing a negative checkerboard with a 
positive one while a negative switch is the reverse. (Note that positive switches are called 
forward switches in [10] and L2 → I2 interchanges in [9].) We define a switching matrix
Ci,j,k,l, with i < j and k < l, as having coefficients cik = cjl = 1, cil = ckj = −1 and 0 
elsewhere. Thus, a positive (resp. negative) switch of coordinates (i, j, k, l) corresponds 
to adding (resp. subtracting) Ci,j,k,l. Note that Ci,j,k,l =

∑
i≤p<j,k≤q<l Cp,p+1,q,q+1; i.e. 

any switching matrix is a sum of unitary switching matrices. Note also that the unitary 
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switching matrices are linearly independent and form a basis of the space of zero-sum 
(for rows and columns) matrices.

2. Oriented graph of matrices

2.1. Sources and sinks

Given vectors R ∈ Np and C ∈ Nq, let M(R, C) denote the set of binary matrices 
with row and column sums R and C. We assume M(R, C) �= ∅ (i.e. the conditions of the 
Gale-Ryser theorem are satisfied). Let G(R, C) denote the oriented graph with vertex 
set M(R, C) and there is an arc from A to A′ if A′ can be obtained from A with a 
positive switch.

As mentioned in the introduction, the undirected graph underlying G(R, C), called 
interchange graph in [13], is well-studied in the literature. It is known to be connected 
(Theorem 1). In [12], multiple algorithms which generate random networks with a fixed 
degree distribution are based on this graph. Our purpose here, however, is to focus on 
properties which derive from the orientation.

Proposition 1. The graph G(R, C) is acyclic.

Proof. For A ∈ M(R, C), let I(A) =
∑

i,j ijaij . Let A′ be obtained from A with a 
positive switch of coordinates (i, j, k, l) where i < j and k < l; i.e. there is an arc from 
A to A′ in G(R, C). Then,

I(A′) − I(A) = I(Ci,j,k,l) = (i− j)(k − l) > 0.

Since I increases along arcs, and therefore along directed paths, G(R, C) is acyclic. �
Recall that directed acyclic graphs have sources and sinks which are vertices with 

zero in-degree and out-degree, respectively. In G(R, C), sources and sinks are, respec-
tively, matrices with no positive checkerboards and no negative checkerboards. The graph 
G(R, C) also represents a partial order on M(R, C), known as the secondary Bruhat or-
der in the literature. The sources and sinks of G(R, C), which are minimal and maximal 
elements of the secondary Bruhat order, have been studied in [9,10] in the case of regular 
graphs.

A matrix A ∈ M(R, C) is said to be nested (resp. anti-nested) if the sequence 01
(resp. 10) does not appear in any row or column; i.e. if the 1s occur before the 0s (resp. 
0s before 1s) in every row and column. Nested graphs have important applications, in 
particular in ecology [4]. For our purpose, the nested case is both trivial and theoretically 
important, as indicated by the following proposition and its corollary.

Proposition 2. If R and C are non-increasing, then A ∈ M(R, C) is nested if and only 
if it has no checkerboards.
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Proof. If A is nested, the sequence 01 does not appear in any row or column of A. Hence, 
there is no checkerboard in A.

Conversely, if A is not nested, there is a row or column containing the sequence 01. 
Say it is a row; since the column with the 0 has degree at least equal to that with 
the 1, there is another row containing 10 in the same two columns. Hence, there is a 
checkerboard. �
Corollary 1. The set M(R, C) is a singleton if and only if it includes a matrix which 
becomes nested after reordering its rows and columns by non-increasing degree.

Proof. This result derives from Proposition 2 by using Theorem 1 and the fact that the 
number of checkerboards in a matrix is invariant under row and column permutation. �

We define a zebra as a matrix in M(R, C) which is the sum of two matrices, one 
nested and one anti-nested. The name zebra refers to the three stripes formed by the 
1s and 0s in the matrix, as shown in Example 1. We say that a zebra is split vertically
(resp. horizontally) if no column (resp. row) has 1s from both the nested and anti-nested 
parts (see Example 1). In other words, a split zebra can be split along a vertical (or 
horizontal) axis so that the left (resp. top) half is nested while the right (resp. bottom) 
half is anti-nested. Note that the two “halves” need not be of equal size. Also, we define 
an anti-zebra as the complement of the vertical reflection of a zebra; i.e. bij = 1 − an−i,j

(see Example 1).

Example 1 (Zebras and Anti-zebras). The matrices A and A′ are zebras. In A, the nested 
and anti-nested parts overlap horizontally and vertically, so A is not split. Meanwhile, 
A′ is a horizontally split zebra, where the top three rows are nested and the bottom 
three anti-nested. Matrices B and B′ are anti-zebras which are the complement of the 
vertical reflection of A and A′, so B′ is horizontally split and B is not split.

A =

⎛
⎜⎜⎜⎜⎝

1 1 1 1 1 0
1 1 1 1 0 0
1 1 0 0 0 1
1 0 0 0 0 1
1 0 0 0 1 1
0 0 1 1 1 1

⎞
⎟⎟⎟⎟⎠ and B =

⎛
⎜⎜⎜⎜⎝

1 1 0 0 0 0
0 1 1 1 0 0
0 1 1 1 1 0
0 0 1 1 1 0
0 0 0 0 1 1
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

A′ =

⎛
⎜⎜⎜⎜⎝

1 1 1 1 1 0
1 1 1 1 0 0
1 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 1
0 0 1 1 1 1

⎞
⎟⎟⎟⎟⎠ and B′ =

⎛
⎜⎜⎜⎜⎝

1 1 0 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0
0 0 1 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

Like nested graphs, zebras and anti-zebras can be characterised by the absence of 
certain submatrices:
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Claim 1. If we exclude full (resp. empty) rows and columns, zebras (resp. anti-zebras) 

are exactly the matrices without 
(

0 1
∗ 0

)
or 

(
0 ∗
1 0

)
(resp. 

(
∗ 1
1 0

)
or 

(
0 1
1 ∗

)
) sub-

matrices, where ∗ denotes either 0 or 1.

Proof. The absence of those submatrices derives from the geometry of the zebra. The 
converse, which is not needed to prove the theorem, we leave as an exercise. �

Note that the forbidden submatrices include negative checkerboards; thus zebras and 
anti-zebras form sinks of G(R, C).

Claim 2. Split zebras, split anti-zebras and their complements include at most one of the 

following vectors as submatrix: (1 0 1), (0 1 0), 
(1

0
1

)
and 

(0
1
0

)
. In particular, 

horizontally split zebras have no (1 0 1), (0 1 0) and 

(0
1
0

)
submatrix.

Proof. This derives from the geometry of the split zebra and anti-zebra. �
Theorem 2. If M(R, C) contains a split zebra or a split anti-zebra, then that split zebra 
or anti-zebra is the only element of M(R, C) without negative checkerboards; i.e. it is 
the unique sink in G(R, C).

(Proof in the appendix)

Corollary 2. Let B ∈ M(R, C) be a split zebra or a split anti-zebra. For all A ∈ M(R, C), 
B can be reached from A via a sequence of positive switches.

Corollary 3. If M(R, C) contains the complement of a split zebra or a split anti-zebra, 
then it is the unique source in G(R, C).

Proof. The complement of a unique sink is a unique source. �
2.2. Adapting Ryser’s theorem to the oriented graph of matrices

It follows from Theorem 1 that the undirected version of G(R, C) is connected. Having 
introduced an orientation naturally raises the question of when can a matrix A′ be 
reached from matrix A via a sequence of positive switches. The remainder of this section 
is devoted to answering this question. We will denote by A → A′ that there is a directed 
path from A to A′ in G(R, C).

Proposition 3. Let R ∈ Np, C ∈ Nq, let A, A′ ∈ M(R, C) and let M = A′ − A. If 
A → A′, then M is a sum of unitary switching matrices; i.e.

(i) There is a unique T = [tik] ∈ Mp−1,q−1(N): M =
∑

i,k tikCi,i+1,k,k+1.
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Proof. Each positive switch corresponds to adding a switching matrix and each switching 
matrix is a sum of unitary switching matrices. The unicity of T follows from the linear 
independence of the unitary switching matrices. �

Remark 1.

• Note that T is uniquely determined by M, even when multiple switching sequences 
lead from A to A′ (see Example 2).

• Given M = A′−A which satisfies condition (i), if we switch a negative checkerboard 
in A to positive, then the coefficients of T inside a rectangle corresponding to the 
checkerboard are all decreased by 1. The new matrix M still satisfies condition (i) if 
and only if the coefficients of T all remain non-negative. Reaching A′ via successive 
switches corresponds to reducing T to 0 in this fashion. (See examples below for 
more details.)

We denote by (i) the necessary condition given in Proposition 3. Unfortunately, con-
dition (i) is not sufficient to ensure A → A′, as shown in Example 3.

Example 2. Let A =
(0 0 1

1 0 0
1 1 0

)
and A′ =

(1 0 0
0 1 0
1 0 1

)
. There are two directed paths 

from A to A′: A →
(1 0 0

0 0 1
1 1 0

)
→ A′ and A →

(0 1 0
1 0 0
1 0 1

)
→ A′. In the first 

case, we add the switching matrices C1,2,1,3 =
( 1 0 −1
−1 0 1
0 0 0

)
followed by C2,3,2,3 =

(0 0 0
0 1 −1
0 −1 1

)
. In the second case, we add C1,3,2,3 =

(0 1 −1
0 0 0
0 −1 1

)
and C1,2,1,2 =

( 1 −1 0
−1 1 0
0 0 0

)
. We have M = A′ − A =

( 1 0 −1
−1 1 0
0 −1 1

)
= C1,2,1,3 + C2,3,2,3 =

C1,3,2,3 + C1,2,1,2. In both of these sums, the first switching matrix can be split into 
two unitary switching matrices. So M is the sum of three unitary switching matrices: 

M = C1,2,1,2 + C1,2,2,3 + C2,3,2,3. Thus M satisfies condition (i) with T =
(

1 1
0 1

)
.

Example 3. Let A =

⎛
⎜⎝

0 0 0 1
1 1 0 1
1 0 1 1
1 0 0 0

⎞
⎟⎠ and A′ =

⎛
⎜⎝

1 0 0 0
1 0 1 1
1 1 0 1
0 0 0 1

⎞
⎟⎠. We have M = A′−A =

⎛
⎜⎝

1 0 0 −1
0 −1 1 0
0 1 −1 0

⎞
⎟⎠, which satisfies condition (i) with
−1 0 0 1
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mi,j−1 mi,j mi,j+1

mi−1,j−1 mi−1,j mi−1,j+1

mi+1,j−1 mi+1,j mi+1,j+1

ti,j−1

ti−1,j−1

ti,j

ti−1,j

mij = tij + ti−1,j−1 − ti,j−1 − ti−1,j

Fig. 1. Relation between coefficients of M and T.

T =
(1 1 1

1 0 1
1 1 1

)
. Matrix A has only one negative checkerboard, with coordinates 

(1, 4, 1, 4). After switching it to positive, reaching A′ now requires a negative switch 
of coordinates (2, 3, 2, 3). Indeed, switching that checkerboard decrements all coefficients 
of T , leaving a -1 in the centre. Hence A � A′. While the matrix M is the sum of eight 
unitary switching matrices, and can be written as a sum of (not all unitary) switching 
matrices in many ways, none of these sums includes C1,4,1,4. So none of the switches 
appearing in these sums is feasible in A.

Lemma 1. Let A, A′ ∈ M(R, C) and M = A′ − A such that there exists T ∈
Mp−1,q−1(N) such that M =

∑
i,k tikCi,i+1,k,k+1 (i). Matrix T is now extended via 

tij = 0 if i = 0 or p, or if j = 0 or q. Then, for all i, j, we have:

mij = tij + ti−1,j−1 − ti,j−1 − ti−1,j .

Proof. Each switching matrix has four non-zero coefficients. So in condition (i), exactly 
four terms in the sum contribute to mij (see Fig. 1). �

If M satisfies (i), we create a (p − 1) × (q − 1) grid, with the coefficients of T inside 
the cells and the coefficients of M at the corners (see Fig. 1). Each cell corresponds to 
a unitary switching matrix and each coefficient of T indicates how many times its cell 
needs to be switched in order to go from A to A′. Let m = max tik. For 1 ≤ i ≤ m, we 
define Pi(M) as the shape formed by grouping the cells of the grid with coefficients at 
least i (see Example 4). Note that Pi(M) is formed by one or several polyominoes. We 
recall that a polyomino is a shape formed by a finite number of orthogonally connected 
cells in a square grid. A polyomino is simply connected if it is delimited by a simple loop, 
i.e. if it has no hole.
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−1 −1 1 1

1 1 −1 −1

−1 −1 1 1

1 1 −1 −1

1

2

2

4

1

2

1 2 1

Fig. 2. Polyomino P2(M) of Example 4. Coefficients of M are placed at the intersections of the grid and 
coefficients of T are inside the cells.

Example 4. Let A =

⎛
⎜⎝

0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

⎞
⎟⎠ and A′ =

⎛
⎜⎝

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

⎞
⎟⎠. We have M = A′−A =

⎛
⎜⎝

1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1

⎞
⎟⎠, which satisfies condition (i) with

T =
(1 2 1

2 4 2
1 2 1

)
. Thus, P1(M) is a 3 × 3 square, P2(M) is an X-shaped pentomino (see 

Fig. 2) and P3(M) and P4(M) are monominoes surrounding only the central cell. Note 
that we have A → A′ and going from A to A′ requires at minimum four switches.

Lemma 2. If Pi(M) contains two diagonally adjacent cells, then at least one of the two 
common neighbouring cells is also in Pi(M).

Proof. Say the cells of coordinates (i, j) and (i − 1, j − 1) are in Pi(M) and the cells of 
coordinates (i −1, j) and (i, j−1) are not in Pi(M) (or vice versa). Then, tij , ti−1,j−1 ≥ i

(resp. ≤ i −1) and ti−1,j , ti,j−1 ≤ i −1 (resp. ≥ i). It follows from Lemma 1 that mij ≥ 2
(resp. ≤ −2). Since M = A′ −A and A and A′ have binary coefficients, the coefficients 
of M are in {−1, 0, 1}. This is impossible. �
Remark 2. This means that Pi(M) cannot contain two polyominoes connected by a 
corner, and there is no distinction between connected and orthogonally connected com-
ponents of Pi(M).

Theorem 3. Let R ∈ Np, C ∈ Nq, let A, A′ ∈ M(R, C) and let M = A′ − A. If M
satisfies the following conditions:

(i) ∃T ∈ Mp−1,q−1(N): M =
∑

i,k tikCi,i+1,k,k+1,
(ii) For all i, each connected component of Pi(M) is simply connected,
(iii) |i′ − i| ≤ 1 and |k′ − k| ≤ 1 ⇒ |ti′k′ − tik| ≤ 1,

then A → A′.
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(Proof in the appendix)

Note that the third condition says that the coefficients inside orthogonally or diago-
nally adjacent cells must be equal or successive integers. The authors have yet to find 
an instance where A � A′ when condition (iii) in Theorem 3 is not satisfied. Also, it 
seems that if for some i, Pi(M) is not simply connected, it should be possible to cre-
ate a counter-example, like in Example 3. Combining these two observations yields the 
following conjecture:

Conjecture 1. Let R ∈ Np, C ∈ Nq and let M ∈ Mp,q({−1, 0, 1}). We have A → A′ for 
all A, A′ ∈ M(R, C) such that A′ − A = M if and only if M satisfies:

(i) ∃T ∈ Mp−1,q−1(N): M =
∑

i,k tikCi,i+1,k,k+1,
(ii) For all i, each connected component of Pi(M) is simply connected.

3. Spectral radius and second Zagreb index

3.1. Extrema

In this section, we consider the class of adjacency matrices of simple graphs with fixed 
degree distribution D. We investigate how the topology of simple graphs affects their 
spectral radius. To this purpose, we analyse the effect of successive positive checker-
board switches on the spectral radius λ1 as well as on the second Zagreb index M2, 
which was used in [14] to create an approximation of λ1: Z2 =

√
M2
m , where m is the 

number of edges. Amongst all the existing approximations for λ1, we chose to focus on Z2
because we are able to map very precisely how it varies throughout the set of adjacency 
matrices of fixed degree distribution. In contrast, most other commonly used approxima-
tions are determined by the degree distribution, meaning that they are invariant under 
checkerboard switching. [15,1].

Let G = (V, E) be a simple graph with |V | = n and |E| = m and adjacency matrix 
A. Let di denote the degree of vertex i ∈ V . The spectral radius of G, denoted by λ1(G)
or λ1(A), is the largest eigenvalue of A. The first and second Zagreb indices are defined 

as M1 =
∑

i∈V d2
i and M2 =

∑
ij∈E didj and we have Z1 =

√
M1
n and Z2 =

√
M2
m . 

Note that Z1 is the quadratic average over V of the degrees, while Z2 is the quadratic 
average over E of 

√
didj . It is well-known that λ1 ≥ Z1, with equality if G is a regular 

graph [16]. Thus, it is the heterogeneity of D that allows λ1 and Z2 to vary among 
the class of graphs with degree distribution D. Also, for a fixed degree distribution, M2
is proportional to the degree assortativity coefficient r, which is the standard Pearson 
coefficient for correlation between the degrees [17]:

r =
M2 − (

∑n
i=1

1
2d

2
i )2/m∑n 1 3 ∑n 1 2 2 .
i=1 2di − ( i=1 2di ) /m
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Let D ∈ Nn be the degree distribution of a simple graph. We now consider the class 
M(D) of adjacency matrices of simple graphs of order n with fixed degree distribution 
D; i.e. symmetric binary matrices with zeroes on the diagonal and row and column sums 
D. Due to the absence of loops, we only consider, in this section, checkerboards with 
no coefficient on the diagonal. Also, given the symmetry of the matrices, checkerboards 
always come in symmetric pairs which are always switched together. In terms of graphs, 
a checkerboard corresponds to a 4-cycle of alternating edges and non-edges. Switching 
a checkerboard means switching the edges and non-edges. We define the symmetric 
switching matrix Cijkl = Cijkl + Ct

ijkl. Note that we now require the coordinates 
(i, j, k, l) to be all different. The distinction between positive and negative checkerboards 
for graphs is dependent on an ordering of the vertices. We will always sort the vertices 
by non-increasing degree; i.e D is non-increasing. A positive (resp. negative) switch of 
coordinates (i, j, k, l) now corresponds to adding (resp. subtracting) Cijkl to the adjacency 
matrix. We define G(D) as the directed graph with vertex set M(D) and an arc joins A
to A′ when A′ can be obtained from A by a positive switch.

Proposition 4. The graph G(D) is acyclic and the underlying undirected graph is con-
nected.

Proof. The connectedness is shown in [18]. The acyclicity follows from the acyclicity in 
the asymmetric case. �
Lemma 3. Let A, A′ ∈ M(D) be such that A′ can be obtained from A by a positive 
switch of coordinates (i, j, k, l). We have M2(A′) −M2(A) = (di − dj)(dk − dl).

Proof. A′ is obtained from A by adding the edges ik and jl and removing il and kj. So 
M2(A′) = M2(A) + didk + djdl − didl − djdk. �
Proposition 5. M2 and Z2 are non-decreasing along arcs of G(D).

Proof. This follows from Lemma 3 and D being non-decreasing. �
Note that M2 and Z2 are constant only along arcs of G(D) which correspond to a 

checkerboard of coordinates (i, j, k, l) where di = dj or dk = dl.

Corollary 4. The sources and sinks of G(D) are, respectively, local minima and maxima 
of M2 and Z2.

The above results give a clear picture of the variations of M2 and Z2 along G(D). 
Unfortunately, the variations of λ1 are not quite so neatly organised. The following 
lemma gives a lower bound to the effect of a single positive switch on the spectral 
radius:
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Lemma 4. Let A, A′ ∈ M(D) such that A′ can be obtained from A by a sequence of 
positive switches of coordinates (ip, jp, kp, lp). Let X denote the normalised principal 
eigenvector of A. We have

λ1(A′) − λ1(A) ≥ 2
∑
p

(xip − xjp)(xkp
− xlp).

Proof. Let X ′ denote the normalised principal eigenvector of A′. Recall that

λ1(A) = XtAX = max
x∈Rn,||x||=1

xtAx,

where || || is the L2-norm. We have:

λ1(A′) − λ1(A) = X ′ tA′X ′ −XtAX ≥ XtA′X −XtAX

= Xt
∑
p

Cip,jp,kp,lpX = 2
∑
p

(xip − xjp)(xkp
− xlp). �

Unfortunately, the coefficients of the principal eigenvector are not always in the same 
order as the degrees. They are, however, strongly correlated [19]; so λ1 increases along 
most arcs of G(D). In fact, they are perfectly correlated in the case where λ1 is maximum:

Proposition 6. If A realises the maximum of λ1 over M(D), then the coefficients of 
the normalised principal eigenvector X of A are in the same order as the degrees; i.e. 
di > dj ⇒ xi ≥ xj.

Proof. Assume we have di > dj and xi < xj . We will show that A does not maximise 
λ1. Let E be a set of di − dj vertices adjacent to i and not j, with j /∈ E. Let A′ be 
obtained from A by replacing the edges between i and E with edges between j and E. 
Note that all the non-zero coefficients of A′ − A are in rows and columns i and j. We 
have:

λ1(A′) − λ1(A) ≥ XtA′X −XtAX = 2(xj − xi)
∑
k∈E

xk ≥ 0.

Consider the case where 2(xj − xi) 
∑

k∈E xk = 0. According to the Perron-Frobenius 
theorem for non-negative matrices, X has non-negative coefficients. Thus, since xj > xi, 
∀k ∈ E, xk = 0. Let k ∈ E, then 

∑
l aklxl = λ1(A)xk = 0. Since all terms in 

∑
l aklxl

are non-negative and k is adjacent to i, we deduce that xi = 0. Similarly, any vertex l
in the connected component of i has xl = 0.

Recall that if there are multiple connected components, the spectral radius of A is the 
maximum of the spectral radii of the connected components. Also, the principal eigen-
vector has zero coefficients on those connected components with spectral radii less than 
the maximum. Since xj > 0, λ1(A) is the spectral radius of the connected component 
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of j, to which i does not belong. Thus, the connected component of j in A is a proper 
sub-graph of that in A′. So λ1(A′) > λ1(A) in this case and in all cases.

The degree distribution of A′ is different from that of A. We resolve this by creating 
A′′, which is obtained from A′ by switching the i-th and j-th rows and the i-th and j-th 
columns. A′′ has the same row and column sums as A and we have λ1(A′′) = λ1(A′) >
λ1(A). Thus, A does not maximise λ1. �

From this, we deduce the following:

Theorem 4. The maximum of λ1 is reached at a sink of G(D).

Proof. Let A maximise λ1 over M(D). For each set of same-degree vertices, we can 
reorder the rows and columns of A so that within these sets, the coefficients of the 
principal eigenvector are non-increasing. This operation does not affect λ1. It follows from 
Proposition 6 that all the coefficients of X are now non-increasing. Let A′ be obtained 
from A by a sequence of positive switches of coordinates (ip, jp, kp, lp). It follows from 
Lemma 4 that

λ1(A′) − λ1(A) ≥ 2
∑
p

(xip − xjp)(xkp
− xlp) ≥ 0.

Since λ1(A) is maximum, any matrix A′ ∈ M(D) such that A → A′ also maximises λ1, 
including the sinks that can be reached from A. �
3.2. Switching algorithm simulations

While Theorem 4 tells us that at least one sink of G(D) realises the global maximum 
of λ1, it gives no indications for identifying which sink to aim for when G(D) contains 
several, as is usually the case. In this section, we showcase how applying successive 
random switches to Erdős-Rényi and Small-World graphs, after ordering its vertices by 
degree, leads to an increase in λ1, which is significant when the edge density is low.

Instead of using a Monte-Carlo method as in the Xulvi-Brunet Sokolov algorithm [6], 
we only apply positive switches selected randomly in the adjacency matrix. Simulations 
that begin with an Erdős-Rényi graph E(N, p) with vertices ordered by degree are shown 
in Fig. 3 and Small World graphs appear in Fig. 4. In both cases, the end result of the 
switching process is very close to a zebra when p > 0.5 and very close to an anti-zebra 
when p < 0.5. When p = 0.5, the end point is simultaneously almost a zebra and almost 
an anti-zebra. In the Erdős-Rényi case with p = 0.2, the spectral radius increases by 
more than 15%, which is very impressive for a fixed degree distribution. Conversely, 
when p = 0.7, the spectral radius increases only by a few decimal points.
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Fig. 3. Spectral radius (plain) and Z2 (dotted) as functions of the number of positive switches, starting from 
Erdős-Rényi graphs with N = 100 vertices. From left to right, the edge density p ranges from 0.2 to 0.7. 
Both the initial (Erdős-Rényi with vertices ordered by degree) and the final matrices are shown in each 
case.

Fig. 4. Same as Fig. 3 with Small-World graphs obtained from a 10 ×10 regular grid after a random rewiring 
of 10% of the edges.

4. Conclusion

Our analysis of the oriented graph of matrices has given us the tools needed to study 
how the topology of graphs impacts their spectral radius λ1. We have shown that the 
global maximum of λ1 is reached for a matrix without negative checkerboards. Our 
simulations show that successively switching negative checkerboards to positive can yield 
a high increase in λ1, especially for sparse graphs.
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Appendix A. Proofs of Theorems 2 and 3

A.1. Proof of Theorem 2

Theorem. If M(R, C) contains a split zebra or a split anti-zebra, then that split zebra or 
anti-zebra is the only element of M(R, C) without negative checkerboards; i.e. it is the 
unique sink in G(R, C).

Proof of Theorem 2. Let A ∈ M(R, C) be a zebra with a horizontal split (i.e. the top 
half is nested and the bottom anti-nested) and let A′ ∈ M(R, C), A′ �= A. We will 
show that A′ has a negative checkerboard. Let M = A′ − A. Since A and A′ have the 
same row and column sums, M has as many 1s and -1s in each row and column. We can 
thus choose in each row and column of M a matching associating each 1 to a -1. Let 
us now choose a -1 in M as a starting point for the sequence defined by the following 
rules: a -1 is followed by its paired 1 in the same row; a 1 is followed by its paired -1 
in the same column. Since the matrix M is finite, the sequence must form a cycle. A 
1-11 sub-sequence in M corresponds to a 010 sequence in A, with the first 0 in the same 
column as the 1 and the second 0 in the same row. Thus, it follows from Claim 1 that 
at a -1, the cycle must form a right turn. Also, after turning right (resp. left) at a 1 in 
M (0 in A), the following -1 is located in the same column on the other side (resp. the 
same side) of the split in A.

If the cycle turns left at every 1 (and right at every -1), it forms an infinite staircase 
pattern, which is impossible. Assume that there is at least one left turn at a 1. There 
must be a left turn at a 1 followed by a right turn at the next 1 somewhere in the cycle. 
This yields a -11-11-1 sequence with a left turn at the first 1 and a right turn at the 
second, as shown in Fig. 5. Note that the first four digits are located on the same side of 
the split while the final -1 is on the other side. We now consider the coefficient located at 
the intersection point A of the row containing the first two digits and the column with 
the last two. Note that A must be positioned between those last two digits due to the 
final -1 being on the other side of the split. If that coefficient is a 0 in A′, then it forms a 
negative checkerboard in A′ together with the middle three coefficients of our sequence; 
and thus A′ is not a sink. Assume now that it is a 1 in A′. The first two terms of our 
sequence are respectively 1 and 0 in A. According to Claim 2, there is no (1 0 1)
submatrix in A. So the coefficient at A is 0 in A and 1 in M. Thus, we can shorten our 
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-1

-1

-1

1

1 A

Fig. 5. Section of a cycle with a left turn. The dotted line indicates the horizontal split of the zebra.

a)

0

0

0

0

1

1

1

A
B

b)

1

1

1

1

0

0

0

A
B

Fig. 6. Section of a self-intersecting cycle with no left turn. The dotted line indicates the horizontal split of 
the zebra.

cycle by replacing the middle three coefficients of our sequence with this 1. The resulting 
cycle has one fewer left turns. By repeating this operation, we obtain a cycle with no 
left turn.

Let us now consider the corresponding cycle in A′. It satisfies the following properties:

• It alternates between 0s and 1s, going from 0 to 1 horizontally and 1 to 0 vertically.
• It always turns to the right.
• All vertical segments cross the split.

If this cycle self-intersects, it forms one of the patterns shown in Fig. 6 (possibly 
rotated by 180◦). In case a) (resp. b)), if the coefficient located at intersection point 
A is a 0 (resp 1), it forms a negative checkerboard with the second, third and fourth 
(resp. fourth, fifth and sixth) terms of the sequence. Else, if the coefficient located at 
B is a 0 (resp. 1), A, B and the fifth and sixth terms (resp. second and third terms) 
form a negative checkerboard. Else, if B is a 1 (resp. 0), the sequence can be shortened 
by replacing the five middle terms with B. This removes the intersection at A while 
maintaining the three properties of the cycle. By repeating this operation, we obtain a 
cycle with no left turn and no intersection; i.e. a negative checkerboard. Thus A′ must 
have a negative checkerboard.

The case of vertically split zebras follows by symmetry along the main diagonal. The 
vertical reflection of a unique sink is a unique source; and the complement of a unique 
source is a unique sink. Thus, the same property holds if A is a split anti-zebra. �
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1) A

B C

D 2) A

B C

D 3) A

B C

D

1) Motif 1 occurs when the entire polyomino is a rectangle.

2) In motif 2, the two vertical sides must have equal length; i.e. AB = CD. Also, the inside 
of rectangle ABCD must be entirely included in the polyomino. The lengths are variable 
and the motif may be rotated.

3) In motif 3, the rightmost side is longer than AB. The inside of rectangle ABCD must be 
entirely included in the polyomino. The lengths are variable and the motif may be rotated 
or reflected.

Fig. 7. Motifs from the contour of a polyomino.

A.2. Proof of Theorem 3

Theorem. Let R ∈ Np, C ∈ Nq, let A, A′ ∈ M(R, C) and let M = A′−A. If M satisfies 
the following conditions:

(i) ∃T ∈ Mp−1,q−1(N): M =
∑

i,k tikCi,i+1,k,k+1,
(ii) For all i, each connected component of Pi(M) is simply connected,
(iii) |i′ − i| ≤ 1 and |k′ − k| ≤ 1 ⇒ |ti′k′ − tik| ≤ 1,

then A → A′.

In order to prove Theorem 3, we will first prove that one of the shapes described in 
Fig. 7 must appear on the contour of any simply connected polyomino. We will then 
show that where this shape appears on Pm(M), we can locate a checkerboard to switch. 
Repeating the operation will create a directed path from A to A′.

Lemma 5. On the contour of any simply connected polyomino, there appears at least one 
of the three motifs described in Fig. 7.

Proof. Let P be a simply connected polyomino. If P is a rectangle, we have motif 1. We 
will now assume that P is not a rectangle.

We define left (resp. right) corners of P as corners where the contour of P, when 
followed clockwise, turns left (resp. right). Note that P is locally non-convex (resp. 
convex) around left (resp. right) corners.

For x, y ∈ P, we define an orthogonal path from x to y as a line joining x and y
consisting of only horizontal and vertical segments included inside P. We denote by 
OP (x, y) the set of orthogonal paths joining x and y. We then define the length of 
an orthogonal path L as the pair (NL, lL), where NL is the number of segments of 
L and lL is the length of the last segment. We define d(x, y), the distance between x
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and y, as the length of the minimal orthogonal path, going by lexicographic order (i.e. 
d(x, y) = (N0, l0) with N0 = minL∈OP (x,y) NL and l0 = minL∈OP (x,y);NL=N0 lL).1

Since P is not a rectangle, it is not convex; so we may choose a point x0 ∈ P such 
that P is not starred in x0. The set of points in P which maximise the distance to x0
comprises one or several segments from the contour of P. Let B and C be the ends of 
one such segment. Both B and C must be corners of P, else points on (B, C) outside of 
[B, C] would be at an equal or greater distance from x0. Let A and D be the other two 
corners adjacent to B and C, respectively. B and C must be right corners, otherwise 
points inside of [AB] or [CD] would be at a greater distance from x0. The rectangle 
ABCD must be included inside of P: if a part of ABCD was outside P, since P is 
simply connected, the minimal orthogonal path from x0 to B would need to go around 
one side of the missing part, and reaching the other side from x0 would require a path 
with more turns.

We may assume w.l.o.g. that AB ≤ CD. Then, A must be a left corner, else reaching 
[AB] from x0 would require one more turn than [BC]. If AB = CD, D must similarly 
be a left turn, and we have the second motif. If AB < CD, we have the third motif. �

We may now prove Theorem 3.

Proof of Theorem 3. Let A, A′ and M satisfy the conditions of Theorem 3; let T satisfy 
(i) and let m = max tik. It follows from applying Lemma 5 to a connected component 
of Pm(M) that there is a rectangle ABCD corresponding to one of the three motifs 
described in Fig. 7 included inside Pm(M). Since m is the maximum coefficient, all 
cells in Pm(M) have coefficient m. It follows from (iii) and Remark 2 that all cells 
orthogonally or diagonally adjacent to Pm(M) have coefficient m − 1. From Lemma 1, 
we have mij = tij + ti−1,j−1 − ti,j−1 − ti−1,j , where tij = 0 if i = 0 or p or j = 0 or 
q. For a right (resp. left) corner of Pm(M), three (resp. one) of the incident cells have 
coefficient m − 1 and one (resp. three) has coefficient m. Thus coefficients of M located 
at corners of Pm(M) must be 1 or −1. More precisely, regardless of the orientation of 
ABCD, the coefficients of M located at the corners are 1 for the top left and bottom 
right corners and −1 for the top right and bottom left, except for D in motif 3 which 
has a 0.

A 1 in M means a 0 in A and 1 in A′; a −1 in M is the reverse; and a 0 in M means 

either two 0s or two 1s in A and A′. So, a 
(

1 −1
−1 1

)
submatrix in M means there 

is a negative checkerboard in A and a positive checkerboard in A′. If any one of the 
four coefficients is replaced by 0, then there is either a negative checkerboard in A or a 
positive checkerboard in A′. Switching that checkerboard, either in A or in A′, results 
in a new instance where ABCD has been cropped from Pm(M). Thus, the new instance 
still satisfies the three conditions of Theorem 3. Repeating the process terminates with 

1 Note that d is not a distance in the usual sense, as its co-domain is not R+. Yet, while d′ : (x, y) �→
N0 + 2

π arctan l0 defines an actual distance, d is more practical for our purposes.
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M = 0, as 
∑

tik is reduced at each step. This constructs a directed path from A to A′

in G(R, C). �
References

[1] J.G. Restrepo, E. Ott, B.R. Hunt, Approximating the largest eigenvalue of network adjacency 
matrices, Phys. Rev. E 76 (5) (2007) 056119.

[2] E. Coupechoux, M. Lelarge, How clustering affects epidemics in random networks, Adv. Appl. 
Probab. 46 (4) (2014) 985–1008.

[3] P.N. McGraw, M. Menzinger, Clustering and the synchronization of oscillator networks, Phys. Rev. 
E 72 (1) (2005) 015101.

[4] R.A. Brualdi, J.G. Sanderson, Nested species subsets, gaps, and discrepancy, Oecologia 119 (2) 
(1999) 256–264.

[5] W. Jiang, J. Yang, A degree distribution optimization algorithm for image transmission, J. Opt. 
Commun. 37 (3) (2016) 301–310.

[6] R. Xulvi-Brunet, I.M. Sokolov, Reshuffling scale-free networks: from random to assortative, Phys. 
Rev. E 70 (6) (2004) 066102.

[7] M. Newman, Mixing patterns in networks, Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 67 
(2003) 026126, https://doi .org /10 .1103 /PhysRevE .67 .026126.

[8] H.J. Ryser, Combinatorial properties of matrices of zeros and ones, Can. J. Math. 9 (1957) 371–377.
[9] R.A. Brualdi, L. Deaett, More on the Bruhat order for (0, 1)-matrices, Linear Algebra Appl. 

421 (2–3) (2007) 219–232.
[10] R. Fernandes, S. Furtado, Extremal matrices for the Bruhat-graph order, Linear Multilinear Algebra 

69 (2020) 1–20, https://doi .org /10 .1080 /03081087 .2020 .1749540.
[11] R.A. Brualdi, G. Dahl, The Bruhat shadow of a permutation matrix, in: O. Azenhas, A.L. Duarte, 

J.F. Queiró, A.P. Santana (Eds.), Mathematical Papers in Honour of Eduardo Marques de Sá, in: 
Textos de Mathemática, vol. 39, 2006, pp. 25–38.

[12] Y. Artzy-Randrup, L. Stone, Generating uniformly distributed random networks, Phys. Rev. E 
72 (5) (2005) 056708.

[13] R.A. Brualdi, Matrices of zeros and ones with fixed row and column sum vectors, Linear Algebra 
Appl. 33 (1980) 159–231.

[14] H. Abdo, D. Dimitrov, T. Réti, D. Stevanovic, Estimating the spectral radius of a graph by the 
second Zagreb index, MATCH Commun. Math. Comput. Chem. 72 (2014) 741–751.

[15] R. Pastor-Satorras, C. Castellano, Eigenvector localization in real networks and its implications for 
epidemic spreading, J. Stat. Phys. 173 (3) (2018) 1110–1123.

[16] C. Elphick, T. Réti, On the relations between the Zagreb indices, clique numbers and walks in 
graphs, MATCH Commun. Math. Comput. Chem. 74 (2015) 19–34.

[17] L. Li, D. Alderson, J.C. Doyle, W. Willinger, Supplemental material: the s(g)-metric and assortativ-
ity [a supplement to” towards a theory of scale-free graphs: definition, properties, and implications”], 
Internet Math. 2 (4) (2005).

[18] C. Berge, Graphes et hypergraphes, Monographie universitaire de Mathématique, vol. 37, Dunod, 
Paris, 1970.

[19] C. Li, Q. Li, P. Van Mieghem, H.E. Stanley, H. Wang, Correlation between centrality metrics and 
their application to the opinion model, Eur. Phys. J. B 88 (3) (2015) 1–13.

http://refhub.elsevier.com/S0024-3795(23)00382-8/bib245097928A570738F57EBA2689745883s1
http://refhub.elsevier.com/S0024-3795(23)00382-8/bib245097928A570738F57EBA2689745883s1
http://refhub.elsevier.com/S0024-3795(23)00382-8/bib0FFD63DFD52E7A8884141424A15B880Es1
http://refhub.elsevier.com/S0024-3795(23)00382-8/bib0FFD63DFD52E7A8884141424A15B880Es1
http://refhub.elsevier.com/S0024-3795(23)00382-8/bibECC2ACCC4ABCE52E68AE9D68E8586CAAs1
http://refhub.elsevier.com/S0024-3795(23)00382-8/bibECC2ACCC4ABCE52E68AE9D68E8586CAAs1
http://refhub.elsevier.com/S0024-3795(23)00382-8/bib010CC46194B494338405CBBF16753C24s1
http://refhub.elsevier.com/S0024-3795(23)00382-8/bib010CC46194B494338405CBBF16753C24s1
http://refhub.elsevier.com/S0024-3795(23)00382-8/bibAE95D0C8B085AD387806EF58AB92A194s1
http://refhub.elsevier.com/S0024-3795(23)00382-8/bibAE95D0C8B085AD387806EF58AB92A194s1
http://refhub.elsevier.com/S0024-3795(23)00382-8/bibFEB16862D504B82FAD64C9C6907BF8B7s1
http://refhub.elsevier.com/S0024-3795(23)00382-8/bibFEB16862D504B82FAD64C9C6907BF8B7s1
https://doi.org/10.1103/PhysRevE.67.026126
http://refhub.elsevier.com/S0024-3795(23)00382-8/bibD65B791C5C1845B70E30A63E027E5A8Ds1
http://refhub.elsevier.com/S0024-3795(23)00382-8/bibE5BFF1A16E5E8600F4D439B00A2D833Es1
http://refhub.elsevier.com/S0024-3795(23)00382-8/bibE5BFF1A16E5E8600F4D439B00A2D833Es1
https://doi.org/10.1080/03081087.2020.1749540
http://refhub.elsevier.com/S0024-3795(23)00382-8/bib12157F4D1F38B3B5DB6FFC7C8E8DC89Cs1
http://refhub.elsevier.com/S0024-3795(23)00382-8/bib12157F4D1F38B3B5DB6FFC7C8E8DC89Cs1
http://refhub.elsevier.com/S0024-3795(23)00382-8/bib12157F4D1F38B3B5DB6FFC7C8E8DC89Cs1
http://refhub.elsevier.com/S0024-3795(23)00382-8/bib867E11EABE6539B05F9690027036DC82s1
http://refhub.elsevier.com/S0024-3795(23)00382-8/bib867E11EABE6539B05F9690027036DC82s1
http://refhub.elsevier.com/S0024-3795(23)00382-8/bibEC093E09C4FCF498B40506C05A840F05s1
http://refhub.elsevier.com/S0024-3795(23)00382-8/bibEC093E09C4FCF498B40506C05A840F05s1
http://refhub.elsevier.com/S0024-3795(23)00382-8/bib306A25CA1A28948F9DBE6EFAD04A45D5s1
http://refhub.elsevier.com/S0024-3795(23)00382-8/bib306A25CA1A28948F9DBE6EFAD04A45D5s1
http://refhub.elsevier.com/S0024-3795(23)00382-8/bib3934A1911E9538A0EEEFCFF818AC4A6Cs1
http://refhub.elsevier.com/S0024-3795(23)00382-8/bib3934A1911E9538A0EEEFCFF818AC4A6Cs1
http://refhub.elsevier.com/S0024-3795(23)00382-8/bib8FCA76ED7AB51DA1260E18D923D5B73Ds1
http://refhub.elsevier.com/S0024-3795(23)00382-8/bib8FCA76ED7AB51DA1260E18D923D5B73Ds1
http://refhub.elsevier.com/S0024-3795(23)00382-8/bibFBBBE65103EBAF19F716CE90650B6B83s1
http://refhub.elsevier.com/S0024-3795(23)00382-8/bibFBBBE65103EBAF19F716CE90650B6B83s1
http://refhub.elsevier.com/S0024-3795(23)00382-8/bibFBBBE65103EBAF19F716CE90650B6B83s1
http://refhub.elsevier.com/S0024-3795(23)00382-8/bib96A02AA7F10F345E1C5882E7EAEB69DAs1
http://refhub.elsevier.com/S0024-3795(23)00382-8/bib96A02AA7F10F345E1C5882E7EAEB69DAs1
http://refhub.elsevier.com/S0024-3795(23)00382-8/bib66B3A721829B5B06C642416461778854s1
http://refhub.elsevier.com/S0024-3795(23)00382-8/bib66B3A721829B5B06C642416461778854s1

	Switching checkerboards in (0,1)-matrices
	0 Introduction
	1 Positive and negative switches
	2 Oriented graph of matrices
	2.1 Sources and sinks
	2.2 Adapting Ryser’s theorem to the oriented graph of matrices

	3 Spectral radius and second Zagreb index
	3.1 Extrema
	3.2 Switching algorithm simulations

	4 Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Proofs of Theorems 2 and 3
	A.1 Proof of Theorem 2
	A.2 Proof of Theorem 3

	References


