TECHNIQUES AND TERRITORIES

New Insights into Mesolithic Cultures

directed by

Auréade HENRY
Benjamin MARQUEBIELLE
Lorène CHESNAUX
Sylvène MICHEL
This digital publication received support from
FUEL USE AND MANAGEMENT DURING THE MESOLITHIC:
Recent Approaches in Archaeobotany

Auréade HENRY, Isabelle THÉRY-PARISOT

Introduction .. 66
1 - Theoretical framework: a systemic approach .. 67
2 - Which fuels for which uses? ... 69
 A - A few uses of fire in the Mesolithic .. 70
 B - Fuel economy in the Mesolithic ... 70
 a - Potential alternative fuels .. 70
 b - Firewood .. 71
3 - What tools can we use to shed light on the practices of Mesolithic societies? 71
 A - Observing modern fuel management systems .. 71
 B - Constituting experimental reference bases .. 74
 a - The soundness of the wood .. 74
 b - The moisture content of wood .. 74
 c - Wood diameter .. 76
 d - Other fuels .. 76
Conclusion .. 77
References cited .. 77

To cite this article

FUEL USE AND MANAGEMENT DURING THE MESOLITHIC:
Recent Approaches in Archaeobotany

Auréade HENRY, Isabelle THÉRY-PARISOT

Abstract
In order to propose working models for the Mesolithic period, this paper presents recent developments in archaeobotany orientated towards the question of fuel management systems and how ethnographic studies and experimentation can enhance our understanding of past phenomena.

The importance of fire and its systematic use during the Mesolithic can be assessed through direct evidence, i.e. the recovery of burned materials with wood, stone, bone and plant remains being the most commonly encountered. The diversity of activities related to fire is also suggested by indirect testimonies, such as the presence of materials (or their processing traces on artefacts) for the production of which a thermic treatment is needed, such as birch tar, animal hides, etc. In accordance with these observations, fuel management practices of Mesolithic societies were undoubtedly complex and culturally significant. However, they remain difficult to approach archaeologically: What kind of fuel was collected and for which purposes? What is the relationship between environment, fuel selection, hearth and site functions?

Keywords
Mesolithic hearths, fuel use, charcoal analysis, phytoliths, experimentation, ethnoarchaeology.

Introduction
It is now widely recognized that the wood charcoal found in archaeological sites reflects accurately the vegetation present in the firewood procurement area (Chabal, 1982, 1991, 1997; Chabal et al., 1999; Asouti, Austin, 2005). However, because the function linking the anthracological spectrum with its source-vegetation is unknown, anthracologists have begun to address the successive filters built up between the ligneous vegetation and the anthracological diagram (Théry-Parisot et al., 2010a-b). Studies integrating not only the firewood management strategies of past societies, but also the effects of combustion and depositional or post-depositional processes on wood charcoal allow us to evaluate the diachronic transformations of the material “wood” and then the charcoal assemblages, and to thus refine our perception of the ligneous environment and its exploitation by humans. These “classic” anthracological questions are now joined by studies aimed at identifying other fuels and their properties (Théry-Parisot, 2001; Théry-Parisot, Costamagno 2005; Delhond et al., 2008; Braadbart et al., 2012). Therefore, the study of fuel management in reality consists of an integrated approach that involves several tools (morphometry, experimentation, modelling) and/or research disciplines (ethnography, zooarchaeology, phytolith analysis, physico-chemical analyses, etc.; figure 1).
In the framework of a doctoral thesis on the Mesolithic of south-western France, we addressed the relationships between the environment and fuel management, while beginning to explore the manners in which social practices can be brought to light through charcoal studies (Henry, 2011). A brief evaluation of research progress for the period in question shows that paleoenvironmental studies are relatively numerous, but unevenly distributed across France (taphonomic conditions, research context, etc.), while data on the use of fuels are rare and scattered. To cite just one example, the range of fuels potentially used by Mesolithic groups has not been studied in-depth: due to the increased biomass since the end of the Pleistocene and the good preservation of wood charcoal in numerous archaeological sites, researchers have rarely inquired into the use of other fuel sources during this period. Meanwhile, understanding the choice of a fuel in terms of available vs. used resources used is crucial to obtaining a better knowledge of the social, as well as paleoenvironmental, context of a human group.

From this perspective, a priority in our work has been to construct a theoretical and methodological framework for the study of fuel management (Henry, 2011). In other words, “an approach to phenomena that are unique in particular, but similar in general” (Bentley, 2003: 9) enabling a consideration of both the cultural and environmental diversity encountered throughout the period, and the particular features associated with each archaeological site. This systemic approach follows the current orientations in research on fuels, with the interpretation of archaeological data being largely based on the creation of experimental and ethnoarchaeological reference datasets.

1 · Theoretical framework: a systemic approach

To develop a methodology adapted to our research subject, a fundamental step is to identify the parameters that operate in (and have an influence on) the processes involved in producing and using fire, starting from the environment from which the fuel was collected until the fire is abandoned (Théry-Parisot, 2001). In doing this, we quickly realize that “simple” behaviors or actions, such as wood collecting, are part of a system of complex relations (figure 2).
The framework of our research is thus situated at the interface between the socio-ecological context (Mesolithic groups interacting with their environment) and the fuel resources used, and resulting from, these interactions. The environmental conditions (climate, topography, pedological and geological facies, vegetation, etc.) probably always had a determining influence on fuel management strategies. The environment evidently imposes limitations, but does not alone determine the modalities or frequencies of its exploitation (Friedman, 1974; Ingold, 1980). This is probably also true in the domain of ideology, which likely defines a framework for the exploitation of fuel resources, but does not determine it alone.

Figure 2 - Fuel management system (after Théry-Parisot, 2001, Henry et al., 2009, modified).
The parameters related to the organization of groups, such as their size and by extension the size of sites, as well as their function and their occupation duration, influence the nature and intensity of activities linked to fire (Théry-Parisot, 2001). These latter have an impact on the consumption of fuels. The satisfaction of the fuel needs of groups (in terms of modalities or capacities) is an expression of the socio-ecological context: the social organization (division of labor, procurement frequency), collection techniques (collection tools, knowledge of the location and properties of different fuels), and ideological factors (perception of the environment, habits, interdictions/preferences, etc.) intervene at all stages of fuel collection and use. The satisfaction of energy (fuel) needs occurs within a given time frame, but also space; it is thus linked to both the occupation duration and the environmental and/or seasonal conditions that influence the nature of the needs, while also determining the productivity of the environment, meaning the exploitable biomass over a given surface area, which in turn contributes to the delimitation of the territory covered by the group for procurement. To summarize, fuel management represents “the expression of the relationship between the energy needs of groups and their capacity to satisfy them” (Théry-Parisot, 2001: 148).

Of course, these relationships and their nature are not all unilateral and participate in continuous and multidirectional exchanges between the different parameters if only the scale and/or observation angle is modified. Therefore, in the more or less long term, the use of wood does or does not have an influence on the environment, the productivity of the location, the methods of exploitation, or all of the parameters together. Variations in consumption can also influence the social organization (and vice-versa), or the productivity of a location, which in turn can also influence consumption, etc.

The nature of certain parameters indicates that it is impossible to determine, in archaeological terms, all of the complexity of different situations. Nonetheless, just taking this into account enables us to develop a better-adapted approach, forcibly involving the integration of results from other paleoenvironmental disciplines, along with archaeological data (Théry-Parisot, 2001; Hather, Mason, 2002). As a result, cultural facies, occupation types, procurement territories, site functions, all of which provide direct or indirect evidence of activities linked to fire (burned materials, tools, activities requiring the use of fire, etc.), are all factors that must be considered when attempting to understand the particular nature of firewood management by past human groups.

2 - Which fuels for which uses?

The fuel residues found in archaeological sites provide direct evidence of the importance of fire to the economy of societies. The persistence of the fireplace as a central element in the activities of human groups since at least the beginning of the Upper Paleolithic enables us approach Mesolithic groups from a paleo-ethnographic perspective (Gallay, 1999). The archaeological data suggest that fire intervened in a broad range of activities, which nonetheless remain difficult to identify, and it is generally believed that prehistoric fires had several had several simultaneous and/or successive functions (Perlès, 1977; Taborin, 1989). These functions can be divided into two broad groups of activities: (i) activities that we designate here as “domestic”, which are associated with the daily production of fire for drying, lighting, heating, protection, food preparation, the elimination of waste, etc. Their non-specialized nature distinguishes them from activities in which fire plays a role in the operational sequences of processing and/or transforming materials. Within this latter category, the demonstrated or suspected uses of fire during the Mesolithic are highly varied.
A - A few uses of fire in the Mesolithic

Different thermic treatments (roasting, drying and smoking) can be used to preserve perishable foods for their deferred consumption at a different site and/or during a season different from that during which they were acquired (e.g. Zapata et al., 2002). It is also likely that fire played a role in the tanning/smoking of certain hides, as has been observed nowadays in many traditional groups (Beyries, 2008). The fabrication of adhesives, such as birch tar, which residues are mainly found on stone artifacts such as arrowheads, requires a heating phase (Pollard, Heron, 1996; Regert, 2004). The thermic treatment of stones in the context of different activities (fracturing, ochre preparation) has been observed (Guilbert, 2001; Brochier, Livache, 2003; Rozoy, 1995; Marchand, this volume). The use of fire as a tool for shaping and hardening wood has also been observed (Mordant, Mordant, 1987). More hypothetically, it is also possible that during this period fire was used away from the habitat site in controlled burn practices associated with subsistence activities (Mason, 2000; Ryan, Blackford, 2010). Finally, though it is difficult to observe, it is plausible that fire played an important symbolic role in Mesolithic belief systems, as is indicated by the funerary practice of cremation (Schulting, 1998; Verjux, 2007).

The skillful use of fire in the context of diverse activities requires a complex management of fuels, especially since fire-related activities must have varied in time and space depending on the cultural and technical traditions of groups, as well as seasonal and/or circumstantial needs.

To summarize, the lifeways of a group have a determining influence on their manner of managing fuels. Therefore, a better understanding of fuel-related practices should contribute to our knowledge of Mesolithic lifeways. The following question is thus raised: to what extent can the study of fuel residues found in archaeological sites enable us to characterize social practices?

B - Fuel economy in the Mesolithic

a - Potential alternative fuels

To our knowledge, only two zooarchaeological studies have addressed the question of the use of bone and cervid antler as fuel (respectively Thibeau, 2008; Bridault et al., 2009), even though bone use is widely known for the Paleolithic (Cain, 2005; Théry et al., 2005; Costamagno et al., 2009). Based on the negative results of these studies, it appears difficult to generalize or conclude that the use of bone as a fuel is specific to the Paleolithic.

In the same manner, we could hypothesize that the use of lignite, occasionally observed in the Paleolithic/Epipaleolithic (Théry et al., 1995), becomes obsolete in the Mesolithic. This material is not always easy to identify, however, and only two anthracological studies of Mesolithic sites have addressed this question (Théry et al., 1996; Henry, 2011).

For the Mesolithic, there is no information on the possible use of peat or non-ligneous vegetal materials (herbaceous plants, leaves) as fuel. We believe that the development of a methodology adapted to the identification of these elements in archaeological contexts is one of the research priorities in this domain.

Finally, excrements, especially those of ruminants, may have been employed, given their use by many modern pastoralist societies for their specific combustible properties (Johannessen, Hastorf 1990; Zapata Peña, 2003). Starting in the Neolithic, the floors of sheepfolds, regularly cleaned by fire, provide evidence for livestock penning through the identification of fossil “manure” (Brochier, 1983, 1996; Delhon et al., 2008). The ability to identify these materials archaeologically (Gur-Arieht et al., 2014) raises the question of their use as fuel during Mesolithic, but also Neolithic times, not yet demonstrated.
b - Firewood

An archeo-anthracological deposit is a reflection of both the original ligneous vegetation and its use as a fuel. However, though an anthracological study conducted under good conditions provides a coherent image of the locally available ligneous vegetation, without complementary data (palynology, carpology, other paleoenvironmental data), it does not permit a full evaluation of the criteria for selecting ligneous fuel materials. Given the good paleoecological representativeness of charcoal remains, should we consider Mesolithic behaviors as opportunistic (e.g., Piqué, 1999)? In other words, an absence of selection in the procurement of firewood would give only a slightly biased image of the ligneous vegetation in the procurement zone. It would also imply that one of the main factors determining fuel management systems in the Mesolithic would be a limited collection effort (Delhon, Thébault, 2009). This hypothesis nonetheless remains to be validated, since we know almost nothing about the firewood collection strategies: were they driven by a taxonomic choice or a set of criteria (Théry-Parisot, 1998, 2001, 2002)? Parameters such as the size and/or state of the wood modify not only the behavior of taxa when burned, but also their combustion properties. For example, combustion will always be more rapid with smaller pieces, regardless of the species, since the fireplace is more oxygenated. It can be slowed down if the wood is green or moist, and accelerated if it is decayed (e.g. the “flash” combustion of wood that has lost most of its combustible properties). The calorific value represents the total quantity of heat released per unit weight of fuel (Chabal, op. cit.). Being dependent on the chemical composition of the species, it is greater for taxa rich in extracts (resins, tannins) and lignins than for taxa with a higher cellulose or ash content. That being, the differences in the calorific value of different species are relatively small, while they increase considerably depending on the state of the wood (ibid.). Green wood, for example, has a very low calorific value. We thus understand how the “species” criterion can become secondary in the collection of firewood, without necessarily adopting a deterministic conception. To summarize, serious inquiry into the burning qualities of the species used and, by extension, the potential functions of fireplaces, is possible only with knowledge of the sizes and/or states of the wood before combustion (Théry-Parisot, 1998, 2001). Finally, the state of the wood (green, dead, rotten) and its size are also related to the strategies for procuring it (felling/collection, kindling, etc.). It is thus imperative to reach beyond the “classic” anthracological information to identify the state and/or size of the wood used in fireplaces, in order to reconstruct fuel selection strategies.

3 - What tools can we use to shed light on the practices of Mesolithic societies?

Research progress in this domain thus depends on the existence of solid modern reference bases, which are still under development. These latter are based on the acquisition of analogical data that can be compared and ultimately transposed to archaeological materials.

A - Observing modern fuel management systems

To test the hypothesis that human behaviors played a perceptible role in the nature and composition of anthracological assemblages, ethnoarchaeology is a pertinent research tool (Ntinou et al., 1999; Ntinou, 2002). It enables us to obtain a global understanding of each fuel management system since all of the interacting parameters are observable or even measurable (Henry et al., 2009). For each recorded context, we can thus evaluate the influence of the human
filter on anthracological deposits before the intervention of post-depositional processes, which also bias our perception of past phenomena and must consequently be dissociated from human processes through other types of research (e.g. taphonomic analyses of wood charcoal by Théry-Parisot, 2001; Chrzaniszewski, 2013; Chrzaniszewski et al., 2014).

The ethnoarchaeological approach must enable us to replace our research question into a well-known reference context, which the archaeologist, in any case draws upon in his/her interpretations, in the same way that the reproducibility of observations must be evaluated in conjunction with a search for explanatory mechanisms (Gardin, 1979; Gallay, 1980, 1986). This procedure permits us to expose the complexity of behaviors and situations in response to models that are sometimes too simplistic (Asouti, Austin, 2005).

Ethnoarchaeological observations obviously cannot be directly applied to archaeological contexts, but provide us with a basis for reflection through observations of the relationships between human practices and charcoal deposits in well-defined situations. The ultimate goal of such an approach is to feed our archaeological models with elements relating to both the paleoecological representativeness of wood charcoal and criteria for selecting fuel materials.

The ethno-anthracological research literature on fuel management has been greatly enriched over the last decade. It consists mainly of observations of sedentary / sedentarized societies (Johannessen, Hastorf 1990; Ntinou, 2002; Zapata-Peña et al., 2003; Alix, Brewster, 2004; Moutarde, 2006; Dufraisse, 2007; Brandisauskas 2007; Joly et al., 2009; Llorenc Picornell et al., 2011; figure 3).

Figure 3 - Locations of the ethno-anthracological references cited in the text.
In the context of mobility and the strong influence of seasonality that is characteristic of Mesolithic societies, it was important to investigate the relationship between societies and the forest and the influence of these lifeways on fuel management strategies. Following this perspective, a first ethno archaeological study was realized in the taiga with the Evenks of the Amur region in eastern Siberia (Henry et al., 2009; figure 4). Working with nomadic Evenk groups living in one of the southernmost boreal forests in the northern hemisphere provided the basis for very relevant reflections on life in a forest environment. While these reindeer herders in the taiga clearly practice an economy that is specialized and focused on animals (Ingold, 1980), it is traditionally much more diversified than that of their homologues in the extreme north of Siberia (ibid.). In addition, the biomass (as well as the taxa encountered) is similar to that which was available to the first Mesolithic groups living in European mountain areas and/or northern Europe. Ethnoarchaeological studies have moreover already been realized with Evenk groups in the context of research on the Mesolithic in northern Europe (Grøn, Kuznetsov, 2004).

Our results indicate that the study model for fuel management is well adapted to recording the practices of modern groups in all their complexity (Henry, 2011). Some observations arising from this boreal context can be retained as working archaeological hypotheses:
 i. Specialized fireplaces have a strong cultural significance and their contents are often different from those of non-specialized fireplaces.
 ii. The addition of non-ligneous vegetal materials is not forcibly due to a lack of wood; it corresponds to a specific function of the fireplaces and can be highly diagnostic of seasonality.
iii. The number and nature of activities linked to fire depend on the season; these activities participate in the definition of the function of the site.
iv. Fuel selection is an active process which does not forcibly contrast with the good ecological representativeness of the fuel residues; this is notably because:
v. The selection of the state of the wood (green / seasoned- healthy / degraded) is sufficient to satisfy all hearth functions. It is at least as important as the wood species.

The confirmation, through ethnography, of the importance of a group of features that define an appropriate fuel – size, physiological and phonological state of the wood, species, etc. – must induce archeobotanists to question the nature of the choices made before any attempt to interpret a fireplace based only on the wood species.

For this reason, to advance in the characterization of fuels, it is essential to constitute experimental reference datasets.

B - Constituting experimental reference bases

The constitution of reference bases that enable the identification of anatomical markers on wood charcoals, dedicated to the interpretation of practices (fuels used, collection strategies, selection of wood size and / or state) is a long-term process that requires the production of a large number of replicas under laboratory conditions. After this phase of validating the cause and effect relationships between a material in a given form or state and the appearance of specific post combustion features, a second important step in experimentation is to transpose these modern observations to archaeological contexts. Below is a brief inventory of a few studies in progress.

a - The soundness of the wood

It is possible to identify the soundness of the wood (i.e., healthy, dead, degraded) by identifying and quantifying the action of microscopic fungal decay features. This action results in alterations to the cellular structure of the wood that are sometimes visible on the anthracological remains (figure 5), serving as markers for the identification of dead or decayed wood (Théry-Parisot, 2001; Moskal-del Hoyo et al., 2010). To interpret archeological charcoal remains in terms of the soundness of the wood used in fireplaces, a tool for the identification of healthy, dead and decayed conifer wood was developed (Henry, 2011). The anthracological study of an Evenk fireplace specialized for hide smoking and fed with decayed wood enabled the identification of a relationship between certain visible modifications of the microstructure of the charcoals and the combustion of degraded wood. A series of experiments with open fireplaces involving the observation of more than 1 500 conifer wood charcoals confirmed this observation and enabled the creation of an index of the sanitary state of the wood ante combustion, applicable to archaeological wood charcoals (Henry, Théry-Parisot, 2014). Other groups of taxa remain to be tested.

b - The moisture content of wood

Hypotheses concerning the identification of green wood (as opposed to seasoned wood) based on charcoal remains are based in part on the presence of radial cracks and vitrification (Marguerie, Hunot, 2007). The conditions for the appearance of the latter phenomenon are poorly understood. We can nonetheless eliminate the combustion of green wood (Henry, 2011) and high temperatures (Mc Parland et al., 2010; Henry, 2011) as possibilities. Recent studies show that the potentially relevant variables are probably related to the state of decay of the wood used and/or charring in a reductive atmosphere (Henry, 2011).
Figure 5 - Main features of the degradation of conifer wood by decay fungi (photos: M. Repoux, CEMEF, Sophia Antipolis).

Transversal section, charcoals of coniferous wood:

A - Showing no fungal degradations

B - At an incipient stage of degradation: formation of cavities in secondary walls

C - Progressive erosion of the cell walls, which appear fragile and porous

D - Degraded and collapsed cell walls
The simple presence of radial cracks on wood charcoals does not necessarily indicate the use of green wood in a fireplace (Théry-Parisot, 2001). On the other hand, the combustion of green wood results in an increase in the number of cracks per mm2; these cracks are also morphologically shorter and wider than those observed on seasoned wood (Théry-Parisot, Henry, 2012; figure 6). These results have been confirmed by a similar experimental study with species from the Patagonian region in Argentina (Caruso Fermé, 2012). The modalities for transposing these observations to archaeological contexts nonetheless remain to be determined.

Transversal sections, experimentally produced charcoals:

A - Resulting from the combustion of green wood
(Pinus sylvestris)

B - Resulting from the combustion of seasoned wood
(Pinus sylvestris)

Figure 6 - Morphology of radial cracks on experimental samples charred under laboratory conditions – muffle furnace (photos: I. Théry-Parisot).

c - Wood diameter

The description of wood sizes (diameters) in anthracological remains is a relatively ancient approach (Marguerie, 1992), still recently applied to the Mesolithic site of Pont-Glas (Marcoux, 2009). Measuring methods have since been improved (Chrzavzez, 2006; Paradis-Grenouillet et al., 2010). Research on the potentials and limitations of this analysis tool have also advanced significantly (Chrzavzez et al., 2011; Théry-Parisot et al., 2011; García, Dufraisse, 2012), in the framework of the “Dendrac” ANR project (dir. by A. Dufraisse), for example, whose results will soon be published.

d - Other fuels

Finally, growing numbers of experimental analyses of other combustible materials, many involving the constitution of reference datasets, enable investigations into the motivations for their use; these materials include lignite (Théry-Parisot, 2001; Henry, 2011) and bone (Théry-Parisot, ibid.; Théry-Parisot, Costamagno, 2005; Mentzer, 2009). Physico-chemical and phytolithic analyses with the objective of identifying the use of dung and/or manure are also being conducted (Delhon et al., 2008; Braadabart et al., 2012; Shahack-Gross, 2011; Lancelotti, Madella, 2012; Gur-Arieh et al., 2014).
Conclusion

Anthracology currently provides answers to a certain number of questions, but only a true interdisciplinary approach can enable the development of fuel management models for the Mesolithic that are open to other technical sub-systems, and which thus contribute to our knowledge of the function of these occupations, the main question in current research. The analysis methods and tools discussed here all have their own potentials and limitations. Their complementarity enables a more global consideration of the complexity of fuel management systems and contributes to our understanding of human-environment interactions during the Mesolithic.

The increase of archeobotanical studies is an important step in this process, contributing to clarify the environmental context of Mesolithic occupations, with a growing number of data showing that Mesolithic groups were highly adapted and anchored to their local context. To interpret charcoal remains from a perspective broader than that of paleoecology, it is imperative that we continue to develop experimental and ethnoarchaeological reference bases.

Ethnoarchaeology enables us to think generally about the fuel management models applicable to the Mesolithic, and to consider more specifically the variability of techniques and practices and regional or individual particularities, and the manner in which these parameters participate in the definition of lifeways. This approach is closely linked to the experimental approach; it enables us to compare the evidence from modern contexts to samples produced in laboratories in order to constitute solid reference data that are then transposable to archaeological remains. The identification of the palette of fuels and firewood collecting practices through the study of archaeological remains is based on the long-term process of experimentation.

References cited

Blanchette R. A., 2000 - A review of microbial deterioration found in archaeological wood from different environments, International Biodeterioration and Biodegradation, 46, 189-204.

Ryan P. A., Blackford J., 2010 - Late Mesolithic environmental change at Black Heath, south Pennines, UK: a test of Mesolithic woodland management models using pollen, charcoal and non-pollen palynomorph data, Vegetation History and Archaeobotany, 19 (5-6), 545-558.

Théry I., Gril J., Vernet J. L., Meignen L., Maury J., 1996 - Coal used at two prehistoric sites in southern France: les Canalettes (mousterian) and les Usclades (mesolithic), Journal of Archaeological Science, 23, 509-512.

Auréade HENRY
Isabelle THÉRY-PARISOT
UMR 7264, CNRS, CEPAM
Campus Saint Jean d’Angély SJA3
24 avenue des Diables bleus
06 357 Nice cedex 04, FRANCE
aureade.henry@cepam.cnrs.fr
isabelle.thery@cepam.cnrs.fr